Massive online data annotation, crowdsourcing to generate high quality sleep spindle annotations from EEG data
نویسندگان
چکیده
منابع مشابه
Data Quality from Crowdsourcing: A Study of Annotation Selection Criteria
Annotation acquisition is an essential step in training supervised classifiers. However, manual annotation is often time-consuming and expensive. The possibility of recruiting annotators through Internet services (e.g., Amazon Mechanic Turk) is an appealing option that allows multiple labeling tasks to be outsourced in bulk, typically with low overall costs and fast completion rates. In this pa...
متن کاملBig Data Quality: From Content to Context
Over the last 20 years, and particularly with the advent of Big Data and analytics, the research area around Data and Information Quality (DIQ) is still a fast growing research area. There are many views and streams in DIQ research, generally aiming at improving the effectiveness of decision making in organizations. Although there are a lot of researches aimed at clarifying the role of BIG data...
متن کاملCrowdsourcing High-Quality Parallel Data Extraction from Twitter
High-quality parallel data is crucial for a range of multilingual applications, from tuning and evaluating machine translation systems to cross-lingual annotation projection. Unfortunately, automatically obtained parallel data (which is available in relative abundance) tends to be quite noisy. To obtain high-quality parallel data, we introduce a crowdsourcing paradigm in which workers with only...
متن کاملCrowdsourcing Linked Data Quality Assessment
In this paper we look into the use of crowdsourcing as a means to handle Linked Data quality problems that are challenging to be solved automatically. We analyzed the most common errors encountered in Linked Data sources and classified them according to the extent to which they are likely to be amenable to a specific form of crowdsourcing. Based on this analysis, we implemented a quality assess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Data
سال: 2020
ISSN: 2052-4463
DOI: 10.1038/s41597-020-0533-4